Genetic linkage map of a wild genome: genomic structure, recombination and sexual dimorphism in bighorn sheep


Jocelyn Poissant, John T. Hogg, Corey S. Davis, Joshua M. Miller, Jillian F. Maddox, and David W. Coltman


BMC Genomics 11: 524; 2010



The construction of genetic linkage maps in free-living populations is a promising tool for the study of evolution. However, such maps are rare because it is difficult to develop both wild pedigrees and corresponding sets of molecular markers that are sufficiently large. We took advantage of two long-term field studies of pedigreed individuals and genomic resources originally developed for domestic sheep (Ovis aries) to construct a linkage map for bighorn sheep, Ovis canadensis. We then assessed variability in genomic structure and recombination rates between bighorn sheep populations and sheep species.


Bighorn sheep population-specific maps differed slightly in contiguity but were otherwise very similar in terms of genomic structure and recombination rates. The joint analysis of the two pedigrees resulted in a highly contiguous map composed of 247 microsatellite markers distributed along all 26 autosomes and the X chromosome. The map is estimated to cover about 84% of the bighorn sheep genome and contains 240 unique positions spanning a sex-averaged distance of 3051 cM with an average inter-marker distance of 14.3 cM. Marker synteny, order, sex-averaged interval lengths and sex-averaged total map lengths were all very similar between sheep species. However, in contrast to domestic sheep, but consistent with the usual pattern for a placental mammal, recombination rates in bighorn sheep were significantly greater in females than in males (~12% difference), resulting in an autosomal female map of 3166 cM and an autosomal male map of 2831 cM. Despite differing genome-wide patterns of heterochiasmy between the sheep species, sexual dimorphism in recombination rates was correlated between orthologous intervals.


We have developed a first-generation bighorn sheep linkage map that will facilitate future studies of the genetic architecture of trait variation in this species. While domestication has been hypothesized to be responsible for the elevated mean recombination rate observed in domestic sheep, our results suggest that it is a characteristic of Ovis species. However, domestication may have played a role in altering patterns of heterochiasmy. Finally, we found that interval-specific patterns of sexual dimorphism were preserved among closely related Ovis species, possibly due to the conserved position of these intervals relative to the centromeres and telomeres. This study exemplifies how transferring genomic resources from domesticated species to close wild relative can benefit evolutionary ecologists while providing insights into the evolution of genomic structure and recombination rates of domesticated species.